Search results for "Division algebras"

showing 3 items of 3 documents

On the Directly and Subdirectly Irreducible Many-Sorted Algebras

2015

AbstractA theorem of single-sorted universal algebra asserts that every finite algebra can be represented as a product of a finite family of finite directly irreducible algebras. In this article, we show that the many-sorted counterpart of the above theorem is also true, but under the condition of requiring, in the definition of directly reducible many-sorted algebra, that the supports of the factors should be included in the support of the many-sorted algebra. Moreover, we show that the theorem of Birkhoff, according to which every single-sorted algebra is isomorphic to a subdirect product of subdirectly irreducible algebras, is also true in the field of many-sorted algebras.

Pure mathematicslcsh:MathematicsGeneral MathematicsSubalgebraUniversal enveloping algebralcsh:QA1-939directly irreducible many-sorted algebraSubdirect productsymbols.namesakemany-sorted algebraSubdirectly irreducible algebraAlgebra representationsymbolsDivision algebraMathematics::Metric GeometryCellular algebrasupport of a many-sorted algebrasubdirectly irreducible many-sorted algebraMathematicsFrobenius theorem (real division algebras)Demonstratio Mathematica
researchProduct

Groups described by element numbers

2013

Abstract Let G be a finite group and L e ( G ) = { x ∈ G ∣ x e = 1 } $L_e(G)=\lbrace x \in G \mid x^e=1\rbrace $ , where e is a positive integer dividing | G | $\vert G\vert $ . How do bounds on | L e ( G ) | $\vert L_e(G)\vert $ influence the structure of G? Meng and Shi [Arch. Math. (Basel) 96 (2011), 109–114] have answered this question for | L e ( G ) | ≤ 2 e $\vert L_e(G)\vert \le 2e$ . We generalize their contributions, considering the inequality | L e ( G ) | ≤ e 2 $\vert L_e(G)\vert \le e^2$ and finding a new class of groups of whose we study the structural properties.

Pure mathematics$p$-groupApplied MathematicsGeneral MathematicsFrobenius group$\mathcal{Q}$-groupssymbols.namesakeSettore MAT/02 - AlgebrasymbolsExponentexponentElement (category theory)MathematicsFrobenius theorem (real division algebras)
researchProduct

Divisible designs from semifield planes

2002

AbstractWe give a general method to construct divisible designs from semifield planes and we use this technique to construct some divisible designs. In particular, we give the case of twisted field plane as an example.

Discrete mathematicsAutomorphism groupGeneral methodDivisible designsField (mathematics)Division (mathematics)Permutation groupTranslation (geometry)Plane (Unicode)Theoretical Computer ScienceR-permutation groupsCombinatoricsDiscrete Mathematics and CombinatoricsAutomorphism groupsTranslation planesDivision algebrasSemifieldMathematicsDiscrete Mathematics
researchProduct